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Abstract: Retinopathy of prematurity (ROP) is a proliferative vascular disease, which is
one of the most dangerous and severe ocular complications in premature infants. Automatic
ROP detection system can assist ophthalmologists in the diagnosis of ROP, which is safe,
objective, and cost-effective. Unfortunately, due to the large local redundancy and the complex
global dependencies in medical image processing, it is challenging to learn the discriminative
representation from ROP-related fundus images. To bridge this gap, a novel attention-awareness
and deep supervision based network (ADS-Net) is proposed to detect the existence of ROP
(Normal or ROP) and 3-level ROP grading (Mild, Moderate, or Severe). First, to balance the
problems of large local redundancy and complex global dependencies in images, we design
a multi-semantic feature aggregation (MsFA) module based on self-attention mechanism to
take full advantage of convolution and self-attention, generating attention-aware expressive
features. Then, to solve the challenge of difficult training of deep model and further improve
ROP detection performance, we propose an optimization strategy with deeply supervised loss.
Finally, the proposed ADS-Net is evaluated on ROP screening and grading tasks with per-image
and per-examination strategies, respectively. In terms of per-image classification pattern, the
proposed ADS-Net achieves 0.9552 and 0.9037 for Kappa index in ROP screening and grading,
respectively. Experimental results demonstrate that the proposed ADS-Net generally outperforms
other state-of-the-art classification networks, showing the effectiveness of the proposed method.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Retinopathy of Prematurity (ROP) is an ocular disease, which frequently occurs in premature
babies with low birth weight (less than 1500 g) or born before 32 weeks of pregnancy and is
considered to be one of the major causes of childhood blindness worldwide [1,2]. The shorter the
gestation or the lighter the birth weight, the more likely that infant is to develop ROP. In addition,
with the improvement of the survival rate of premature infants worldwide, ROP has become
a problem that cannot be ignored in both developed and developing countries, especially in
developing countries [3]. For example, there are about 2 million premature babies born annually
in China, and it is conservatively estimated that about 20000 preterm infants suffer from ROP [4].
In addition, it is estimated that about 30000 premature infants annually are blind or suffer severe
vision impairment due to ROP around the world [5].
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At present, the prevention and treatment mode of ROP at home and abroad is that ophthalmol-
ogists obtain the fundus images of premature infants using the RetCam imaging system, which
has been widely used due to its simple operation, wide-angle imaging, and high resolution [6].
Then, retinopathy of prematurity can be divided into five stages, plus disease, and aggressive
posterior retinopathy of prematurity (AP-ROP), which is based on the international classification
of ROP (ICROP) [7,8]. In addition, the ICROP also defines three ROP zones according to the
symptom location in ROP, with each centered on the optic disc. Figure 1 shows six examples,
including a normal fundus image and five fundus images of stage 1 to 5.

Fig. 1. Examples of normal and stage 1 to 5. The ROP lesion areas are in red boxes. (a)
Normal. (b) stage 1. (c) stage 2. (d) stage 3. (e) stage 4. (f) stage 5.

Studies have shown that early screening, appropriate diagnosis, and timely treatment are the
most effective ways to prevent blindness for premature infants with ROP [9]. Unfortunately, the
global burden of the disease is still not fully addressed due to the following three main reasons.
Firstly, barriers to screening include the lack of medical equipment and qualified professionals for
ROP examination, especially in developing countries such as China and India [10,11]. Secondly,
the images used for ROP diagnosis are usually blurry with low-contrast lighting, which may
impair both human and machine interpretation of the images [12]. Eventually, accurate and
objective diagnosis of ROP is difficult. Studies have shown that even among ROP clinical
experts, the diagnostic variability is high due to their subjective interpretation, which may lead to
significant differences in the clinical outcomes of preterm infants [13–15]. Based on the above
factors, more and more researchers are interested in automatic ROP analysis and diagnosis based
on artificial intelligence (AI) technology, which may improve the convenience and speed of ROP
diagnosis and promote the standardization and objectivity of ROP diagnosis.

Over the few decades, inspired by the human multi-layer neural system, AI technology has
made outstanding performance in medical image interpretation and diagnosis, such as the
diagnosis of lung cancer [16], skin cancer [17] and breast histopathology [18] and the detection
of glaucoma [19], age-related macular degeneration [20] and diabetic retinopathy [21]. In recent
years, some studies have focused on ROP diagnosis, and have achieved promising results. Most
of these studies focus on the identification of plus diseases, involving traditional methods and
deep learning methods. The majority of traditional methods are to measure the statistics of the
retinal blood vessels in the fundus images to identify plus disease, such as the diameter and
curvature of the blood vessels. For example, “ROPTool” [22] and “i-ROP” [23] systems were
developed to assist ophthalmologists in the diagnosis of plus disease, which required manually
tracked and segmented vessels as input, thereby being limited in clinical applications. Zachary
et al. developed a deep learning algorithm to automatically diagnose plus disease with high
sensitivity and negative predictive value [24]. Driven by powerful deep neural networks and
transfer learning in recent years, several deep learning based convolutional neural networks
(CNNs) have been developed to focus on ROP screening, ROP severity grading, ROP staging,
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and ROP zoning. For example, pre-trained VGG16 was used to detect whether the ROP exists
so as to realize the screening of ROP [25]. Hu et al. explored several architectures of CNNs
pre-trained on ImageNet to detect the existence of ROP and grade the severity of ROP in a
per-examination pattern [26]. Similar to the work of Hu et al., Huang et al. applied transfer
learning to five deep neural network architectures to solve two problems in ROP detection: the
existence of ROP (Normal or ROP) and the severity of ROP (mild-ROP or severe-ROP) [27].
Chen et al. used a fully convolutional network (FCN) to generate a binary segmentation map at
the pixel level, which was then fed into a multi-instance learning (MIL) module along with the
original image for 4-level ROP staging [28]. Ding et al. focused on diagnosing stages 1–3 by
using object segmentation and convolutional neural network with transfer learning strategy [29].
Zhao et al. first used ResNet50 pre-trained on the Microsoft COCO dataset to detect the center of
the optic disc and macula, then drew the boundary of zone I according to the ICROP standard,
and finally judged the severity of the ROP disease [30]. To our best knowledge, this was the first
time to use CNN to realize ROP zoning, but it can only identify zone I, not zone II and zone
III. Recently, Agrawal et al. used U-Net and Hough circle transform to detect zones I, II and
III, which involved optic disc and blood vessel segmentation [31]. In their method, macula’s
location was determined according to the Refs. [32] and [33] and repeated verification by senior
ROP specialists. In addition, our previous works have focused on the ROP diagnosis, mainly
solving three problems in ROP diagnosis. First, we used ResNet18 with transfer learning and
attention mechanism for automatic ROP screening [34]. Second, we proposed a three-stream
network with features fusion, transfer learning, and ordinal classification strategy for 5-level
ROP staging in per-image and per-examination patterns [35]. Finally, a semi-supervised feature
calibration adversarial learning network (SSFC-ALN) was proposed for 3-level ROP zoning [36].
In conclusion, CNNs based algorithms can realize automatic and objective ROP diagnosis, thus
assist ophthalmologists in the diagnosis and treatment of ROP.

The current paper builds upon the previous successful models and proposes a novel methodology
for the automatic ROP diagnosis. The method proposed in this paper is used to solve two ROP
detection tasks. The first is to realize the screening of ROP, which is a binary classification
problem. The second is to assess the severity of ROP according to 3-level ROP grading. Both
tasks are analyzed in per-image and per-examination patterns. To realize the accurate ROP
detection, several architectures based CNNs are explored, including the ResNext [37], DenseNet
[38], ResNet [39], Inception [40], EfficientNet [41], HRNet [42], and ECA-Net [43], which
have been proved to hold promise for ROP screening and grading in the following experiments
of Section 3, especially for ROP screening. However, some challenges still exist on the ROP
detection tasks. Firstly, the demarcation lines or ridges presented in the fundus images usually
only account for a small part of the whole fundus image, which means that there is a lot of
redundant information in the fundus image and this redundant information may affect the accuracy
of ROP detection. Secondly, some ROP fundus images are characterized by the demarcation
line between vascularized and avascular areas with significant differences in location and shape,
which may lead to lower discriminability of the features learned by the hidden layer. Many
previous studies [37–41] have shown that CNNs can effectively reduce local redundancy by
convolution in a small neighborhood, but the limited receptive filed makes it difficult to capture
global dependencies. Alternatively, self-attention mechanism can effectively capture long-range
dependency. Therefore, to meet the first challenge, we design a novel attention module named as
multi-semantic feature aggregation (MsFA) module based on self-attention mechanism, which can
be embedded in CNNs to combine the advantages of convolution and self-attention. In addition,
although increasing the depth of the network can improve the feature extraction capability of
the network, it will also increase the difficulty of network optimization, which may lead to the
disappearance of the gradient and the slow optimization speed. Previous studies have proved that
deep supervised learning is helpful to solve the above problems [44–46], which has attracted our
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attention. Therefore, to meet the second challenge, the deep supervision strategy is adopted by
adding auxiliary classifiers after some intermediate convolutional layers in our proposed network,
which can not only accelerate convergence speed in deep neural network training, but also make
full use of the feature information of hidden layers.

To sum up, we propose a novel attention-awareness and deep supervision based network
(ADS-Net) for two ROP detection tasks in per-image and per-examination patterns. The main
contributions of this paper can be summarized as follows:

(1) A novel attention module named MsFA module is designed and embedded into CNN,
which can improve the ability of the model to capture the global long-range dependencies
of multi-semantic features from different layers.

(2) Deep supervised learning is introduced by increasing auxiliary classifiers as supervision
branches after some intermediate convolutional layers, which facilitates model training
and allows the use of feature information of hidden layers for efficient model optimization.

(3) Both per-image and per-examination strategies are conducted to evaluate the proposed
ADS-Net.

The remainder of this paper is organized as follows: the proposed method for automatic ROP
screening and ROP grading is introduced in Section 2. Section 3 presents the experimental
results in detail. In section 4, we conclude this paper and suggest future work.

2. Methodology

2.1. Overview framework

In this study, two ROP detection tasks are performed, including ROP screening and ROP
grading. Figure 2 shows the proposed ADS-Net based ROP detection framework, consisting
of a DenseNet121 for feature extraction, a MsFA module embedded into CNN to balance the
problems of large local redundancy and complex global dependencies, and three classifiers to
help with model optimization. Firstly, DenseNet121 is a dense convolutional network, making
each layer in the network directly connected with its front layer to realize the reuse of features.
In addition, DenseNet121 also has advantages in saving parameters and reducing overfitting
[38]. Secondly, the MsFA module is embedded in the classification network to improve the
ability of the model to capture the global long-range dependencies of multi-semantic features
from different layers. Finally, to make full use of the feature information of hidden layers and
help deep network optimization, the deep supervised learning strategy is adopted by adding two
additional auxiliary classifiers after the second and third stages in DenseNet121 (classifier 1 and
classifier 2 shown in Fig. 2). Notably, many previous studies have shown that transfer learning is
an effective strategy to train the deep neural network when the target dataset is small [37–41],
[47–49]. Therefore, transfer learning is used to help model training in this study.

2.2. Multi-semantic feature aggregation module

An important property of the human visual system is that one does not attempt to process the
whole scene at once but selectively focuses on the salient parts to capture the visual structure
better [50]. Inspired by this human perception process, many previous studies have widely
explored attention mechanism, demonstrating that applying attention mechanism to convolutional
neural network can increase its representation power to focus on important features, suppress
the irrelevant ones and improve the performance in many computer vision tasks [43], [51–60].
For example, Hu et al. introduced a compact module named Squeeze-and-Excitation module
(SE module) to exploit the inter-channel relationship, which applied global average-pooled
features to computer channel-wise attention [52]. Recently, some new channel attention modules
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Fig. 2. An overview of the proposed ADS-Net based ROP detection framework. The
ADS-Net consists of a feature extractor and three classifiers, where two auxiliary classifiers is
in red and blue dotted boxes and a master classifier is in green dotted box. In addition, ‘MP’,
‘AAP’, ‘fc’ and ‘softmax’ represent max pooling operator, adaptive average pooling operator,
fully connected operator, and Softmax activation layer, while ‘L’ represents multiple stacked
dense connection module, ‘P’ represents the predicted classification results and ‘MsFA’
represents the proposed multi-semantic feature aggregation module as shown in Fig. 3.

have been proposed successively, such as Efficient Channel Attention module (ECA module),
Pyramid Squeeze Attention module (PSA module), and Coordinate Attention module (Coord.
Attention module) [43,54,55]. In addition, Woo et al. apply attention-based feature refinement
with two distinctive modules from the channel and spatial axes and propose the Convolutional
Block Attention Module (CBAM), which is a lightweight and general module [53]. Although
such attention based feature extraction methods can improve the performance of CNNs, it still
learns the feature relationships in limited receptive fields, which makes it hard to capture the
global dependencies. Different from the above attention based methods, Fu et al. propose a
Dual Attention Network (DANet) to capture rich context dependence based on the self-attention
mechanism, which emphasizes meaningful features along the channel and spatial axes [51].
Therefore, considering the high redundancy and the complex global dependency of ROP fundus
images, and previous studies have shown that CNNs and self-attention mechanism can alleviate
the above problems respectively, we design a new attention module named as multi-semantic
feature aggregation (MsFA) module as shown in Fig. 3 and embed it into the classification
network based on the previous successful applications of CNNs and self-attention mechanism.
As shown in Fig. 3, given two different input features F1 ∈ RC′,H′,W′ and F2 ∈ RC,H,W , where C
and C′ represent the channel numbers of two input features, H and H′ represent height of two
input features, and W and W ′ represent the width of two input features, the design of the MsFA
module mainly consists of six steps:

(1) The convolution operation with 1 × 1 kernel size is adopted to transform the feature map F1
into the same channel space as F2, which is denoted as F′

1 ∈ R C,H′,W′ (H = H′, W = W ′).

F′
1 = Conv1 ×1(F1) ∈ R

C,H′,W′

(1)

(2) A 1 × 1 convolutional operator is used to encode the input feature F′

1 ∈ RC,H,W to generate
a new feature map Q, and two 1 × 1 convolutional operators are used to encode the
input feature F2 ∈ RC,H,W to generate two new feature maps K and V respectively, where
{Q, K} ∈ RC/r,H,W and V ∈ RC,H,W .

Q = Conv1 ×1(F′
1) ∈ R

C/r,H,W (2)

K = Conv1 ×1(F2) ∈ R
C/r,H,W (3)

V = Conv1 ×1(F2) ∈ R
C,H,W (4)
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(3) We reshape and transpose Q to Q ∈ R H∗W,C/r, and reshape K to K∈ RC/r,H∗W and V to
V ∈ RC,H∗W , where C, H, and W represent the channel numbers, height and width of the
input feature and r is the compression ratio.

Q = Transpose(Reshape(Q)) ∈ R H∗W,C/r (5)

K = Reshape(K) ∈ RC/r,H∗W (6)

V = Reshape(V) ∈ RC,H∗W (7)

(4) We do a matrix multiplication between Q and K and use a Softmax activation function to
calculate the similarity matrix E ∈ RH∗W,H∗W between query and key, as follows:

E = Softmax(Q∗K) ∈ RH∗W,H∗W (8)

where ∗ is the matrix multiplication operation.

(5) We do a matrix multiplication between V and the transpose of E to obtain the spatial
response FT and reshape it to FT ∈ R C,H,W .

FT = Reshape(V∗ET ) ∈ R C,H,W (9)

6) Finally, we do an element-wise summation between the original input feature F2 and the above
spatial response FT to obtain the final spatial attention output Ff ∈ R

C,H,W as follows:

Ff = F2 + σ ∗ FT ∈ R C,H,W (10)

where σ is initialized to 0 and is a learnable parameter, which gradually learns to assign more
weights. As can be seen from Eq. (10), the final feature map Ff is the weighted sum of the
multi-semantic and strong semantic global features, which can adaptively build long-range
dependencies from distant regions.

Fig. 3. Multi-semantic feature aggregation (MsFA) module. ‘F1’ and ‘F2’ represent two
different input features of MsFA module, where ‘F1’ and ‘F2’ come from ‘L3’ and ‘L4’ in
Fig. 2, respectively. ‘E’, ‘FT ’ and ‘Ff ’ represent the similarity matrix, spatial response
matrix and output feature, respectively. ‘T’ is a transform operation, which is obtained by a
1× 1 convolution as shown in Eq. (1). In addition, ‘Q’, ‘K’ and ‘V’ are similar to the three
branches of self-attention mechanism (query, key and value), which are realized by three
1× 1 convolutions as shown in Eq. (2), (3) and (4).
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2.3. Deep supervised learning

In recent years, deep networks have brought performance gains in computer vision tasks. However,
many empirical evidences suggest that the increase of network depth may increase the difficulty
of network optimization and the performance improvement cannot be achieved by simply stacking
more layers [61], which may cause the problem of gradient disappearance and slow convergence
speed. Previous studies have shown that deep supervised learning can alleviate the above
problems [44–46]. Therefore, to help network training and further improve the accuracy of ROP
detection, the deep supervision strategy is adopted by increasing auxiliary classifier after some
intermediate convolutional layers in our classification network. The auxiliary classifier as a
branch of the network can provide extra supervision to the backbone network so as to enhance the
representation ability of the network. In addition, if the network is too shallow, it cannot extract
features with sufficient discriminating ability. Therefore, based on the above enlightenment, the
auxiliary classifier branches are added in the later layers of the network to deepen the network
with deep supervision strategy. As can be seen from Fig. 2, we add two auxiliary classifiers as
supervision branches after the second and third stages in DenseNet121, so that the information of
hidden layers can be used and different losses can be responsible for different parts of the weight
layers in the network, which can propagate effective information through backward propagation.
Similar to the previous study on deep supervision [44–46], three loss functions, including one
master branch loss and two auxiliary losses are trained to pass through all previous layers of the
backbone network. The two auxiliary losses are helpful for the learning process optimization,
while the master branch loss takes the major responsibility. To achieve this, we add weights to
balance the auxiliary losses and master loss as shown in Eq. (11). It is worth noting that in the
test phase, we only use the optimized master branch to obtain the final ROP detection prediction.

2.4. Loss functions

In this study, we develop an attention-aware and deep supervision based network (ADS-Net)
for ROP detection. The 3-channel fundus images with corresponding labels are fed into the
ADS-Net to train the classifier. In addition, the strategy of deep supervision introduces the two
auxiliary classification losses. Based on the analysis, the total loss function is defined as follow:

L = α ∗ L1 + β ∗ L2 + γ ∗ L3 (11)

Lj = −
1
m

m∑︂
i=1

K∑︂
k=1

I(yi = k)log(p(k|xi)) (12)

where Lj is the classification loss of j-th classifier (j= 1,2,3). α, β, and γ are three hyper-
parameters and are set to 0.2, 0.3, and 0.5, respectively. m is the number of samples per
mini-batch, yi denotes the class label of image xi · I (·). is an indicator function, which equals
one if yi is equal to k, and zero otherwise.

3. Experiments and results

In this section, we first introduce the datasets and evaluation metrics for ROP detection. Then,
we present the implementation details, including data preprocessing and the parameter settings in
the training phase. Finally, we will give the detailed experimental results and the corresponding
analysis.

3.1. Datasets and evaluation metrics

3.1.1. Datasets

In our experiments, we evaluate the proposed ADS-Net on two ROP detection datasets, which
are both from Guangzhou Women and Children’s Medical Center. The first one includes 7396
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fundus images from 1543 examinations, which is used to detect the existent of ROP (Normal or
ROP). The other is used for 3-level ROP grading (Mild, Moderate, or Severe), which includes
1337 fundus images from 363 examinations. Both of them with a resolution of 640× 480× 3
were collected using RetCam3 by professionals between 2012 to 2015. The collection and
analysis of image data were approved by the Institutional Review Board of Guangzhou Women
and Children’s Medical Center and adhered to the tenets of the Declaration of Helsinki. An
informed consent was obtained from the guardians of each subject to perform all the imaging
procedures.

Data annotation was performed by three pediatric ophthalmologists, including one chief
ophthalmologist with more than fifteen years of ROP clinical experience and two attending
ophthalmologists with over three years of ROP clinical experience from Guangzhou Women and
Children’s Medical Center. The labeling of ROP is based on the symptoms described in the
guide of ICROP. The process of annotation is divided into two phases. The ophthalmologists
first annotated the images into normal or ROP types, followed by labeling 3-level ROP grading.
All the annotation work was conducted by three pediatric ophthalmologists independently, and
only the data with consistent results were used to evaluate the proposed network. According
to the annotation result in the second phase, a high level of data imbalance is observed, where
there are relatively few ROP data in stage 1 and 5. Therefore, to alleviate the data imbalance
problem, we classify stage 1 and 2 as mild ROP, stage 3 as moderate ROP, and stage 4 and 5 as
severe ROP. This type of ROP grading is based on previous studies [26,62,63], but the difference
is that we subdivide stage 3 into moderate ROP because stage 3 is an important stage between
demarcation line growth and retinal detachment. In addition, a patient usually includes one or
more examinations, and after data annotation, one or more fundus images are usually included in
one examination. The datasets used for training, validating, and testing the proposed ADS-Net are
randomly split according to the examination of left and right eyes of each patient shown in Table 1
and Table 2. It is easy to observe from Table 1 and Table 2 that the number of the first dataset is
more than that of the second dataset. There are two possible reasons. First, ophthalmologists
have high consistency in the first annotation phase. In contrast, in the second annotation phase,
high diagnostic variability is observed among them due to subjective evaluation, which has been
proved in previous studies [14,64]. Second, for the ROP grading task, the fundus images of
normal are not involved.

Table 1. The first dataset used for training, evaluating, and testing the
proposed method in this study

Dataset
Normal ROP Total

examination image examination image examination image

Training 595 2230 328 2211 923 4441

Validating 198 743 111 738 309 1481

Testing 197 739 114 735 311 1474

Total 990 3712 553 3684 1543 7396

3.1.2. Evaluation metrics

To quantitatively evaluate the performance of our ADS-Net on two ROP detection tasks, different
metrics are calculated. For the first ROP detection task, which is a binary classification, five
different metrics are calculated, including accuracy, recall, precision, F1-score, and Kappa
[65,66]. The ROP grading task is a multi-classification problem, and the dataset categories are a
bit unbalanced, as shown in Table 2. Therefore, same as previous studies [35,36], four common
classification metrics, including weighted-average recall (W_R), weighted-average precision
(W_P), weighted-average F1 score (W_F1), and Kappa, are introduced.
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Table 2. The second dataset used for training, evaluating, and testing the proposed method in this
study

Dataset
Mild Moderate Severe Total

examination image examination image examination image examination image

Training 121 360 59 269 18 118 198 747

Validating 42 113 18 75 13 70 73 258

Testing 51 153 29 106 12 73 92 332

Total 214 626 106 450 43 261 363 1337

Table 3. Performance of different methods on image-based normal and ROP binary classification

Methods Accuracy Recall Precision F1-score Kappa Parameters (M) FLOPs

DenseNet169 [38] 0.9735 0.9701 0.9767 0.9734 0.9471 12.4895 4.46e9

ResNet50 [39] 0.9728 0.9701 0.9754 0.9727 0.9457 23.5121 5.38e9

ResNext50 [37] 0.9728 0.9673 0.9780 0.9726 0.9457 22.9840 5.57e9

SE_ResNet50 [52] 0.9722 0.9333 0.9806 0.9719 0.9444 26.0431 5.08e9

SE_ResNext50 [52] 0.9701 0.9660 0.9739 0.9699 0.9403 25.5150 5.57e9

InceptionV4 [40] 0.9715 0.9701 0.9727 0.9714 0.9430 41.1459 8.34e9

EfficientB2 [41] 0.9654 0.9537 0.9763 0.9649 0.9308 7.7095 2.56e7
HRNet [42] 0.9769 0.9687 0.9849 0.9766 0.9539 19.2541 5.65e9

ECA-Net152 [43] 0.9735 0.9673 0.9793 0.9733 0.9471 58.1481 1.51e10

Peng et al. [34] 0.9729 0.9660 0.9793 0.9726 0.9457 17.6205 4.02e9

Zhang et al. [25] 0.9687 0.9619 0.9752 0.9685 0.9376 134.2637 2.02e10

Baseline 0.9664 0.9619 0.9658 0.9652 0.9308 6.9559 3.76e9

Baseline+MsFA 0.9735 0.9660 0.9807 0.9733 0.9471 8.6620 3.87e9

Baseline+DS 0.9708 0.9728 0.9688 0.9708 0.9417 6.9574 3.76e9

ADS-Net 0.9776 0.9714 0.9835 0.9774 0.9552 8.6636 3.87e9

3.2. Implementation and details

3.2.1. Data preprocessing

All fundus images are resized to 256 ×256× 3 by bilinear interpolation to reduce the computa-
tional cost. In addition, to eliminate the effects of different scales and illuminations, pixel intensity
normalization is performed using the transforms.ToTensor module and transforms.Normalize
module of a Pytorch graphics library called torchvision. In addition, we perform data aug-
mentations for the two ROP detection tasks, including random rotation, horizontal and vertical
flipping.

3.2.2. Parameter setting

The proposed ADS-Net is implemented based on the PyTorch framework. A NVIDIA GTX
Titan X GPU with 12GB memory is used to train the model with back-propagation algorithm
by minimizing the loss function as shown in Eq. (11). The optimizer is Adam, where both
initial learning rate and weight decay are set to 0.0001 to optimize all networks. For the first
ROP detection task, the batch size and epoch are set to 48 and 100, respectively, while for the
ROP grading task, the batch size and epoch are set to 32 and 100. The compression ratio r in
MsFA module is set to 16 in this study. During training, all networks are trained with identical
optimization schemes, and we save the best model on the validation set. The code of the proposed
ADS-Net will be released in: https://github.com/yuanyuanpeng0129/ADS-Net.

https://github.com/yuanyuanpeng0129/ADS-Net
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3.3. Comparison experiments

In this paper, we propose an image-based ADS-Net for ROP automatic detection, including
ROP screening and 3-level ROP grading. In addition, in the actual clinical diagnosis, the
ophthalmologists usually browse multiple fundus images in one examination and take the
diagnosis result of the most severe image as the final diagnosis result. Therefore, we also use
an image-based classifier to verify the classification performance of our model according to
examinations. Next, a series of comparative experiments and ablation experiments are presented
and analyzed in detail.

3.3.1. Comparison experiments on ROP screening

For ROP screening, which is binary classification between normal and ROP, we evaluate the
proposed ADS-Net on the testing dataset shown in Table 1, which contains 1474 fundus images
from 311 examinations. Table 3 and Table 4 show the quantitative results of different methods in
per-image and per-examination patterns, respectively. We compare the proposed ADS-Net with
other excellent CNN based classification networks, including DenseNet169 [38], ResNet50 [39],
InceptionV4 [40], EfficientNetB2 [41], ResNext50 [37], SE_ResNet50 [52], SE_ResNext50 [52],
HRNet [42], and ECA-Net [43]. For convenience, we call the basic DenseNet121 pre-trained
on ImageNet as the Baseline method. As can be seen from Table 3 and Table 4, our ADS-Net
achieves superior performance in terms of most metrics.

Table 4. Performance of different methods on examination-based Normal and
ROP binary classification

Methods Accuracy Recall Precision F1-score Kappa

DenseNet169 [38] 0.9581 0.9737 0.9174 0.9447 0.9111

ResNet50 [39] 0.9453 0.9649 0.8943 0.9283 0.8842

ResNext50 [37] 0.9421 0.9561 0.8934 0.9237 0.8772

SE_ResNet50 [52] 0.9421 0.9474 0.9000 0.9231 0.8767

SE_ResNext50 [52] 0.9550 0.9649 0.9167 0.9402 0.9041

InceptionV4 [40] 0.9421 0.9561 0.8934 0.9237 0.8772

EfficientB2 [41] 0.9325 0.9561 0.8720 0.9121 0.8575

HRNet [42] 0.9518 0.9561 0.9169 0.9356 0.8971

ECA-Net152 [43] 0.9550 0.9737 0.9098 0.9407 0.9045

Peng et al. [34] 0.9518 0.9737 0.9024 0.9367 0.8978

Zhang et al. [25] 0.9486 0.9474 0.9153 0.9310 0.8900

Baseline 0.9357 0.9649 0.8730 0.9167 0.8645

Baseline+MsFA 0.9518 0.9649 0.9091 0.9362 0.8975

Baseline+DS 0.9518 0.9737 0.9024 0.9367 0.8978

ADS-Net 0.9614 0.9649 0.9322 0.9483 0.9175

As shown in Table 3, compared to the Baseline, our proposed ADS-Net improves the accuracy,
recall, precision, F1-score, and Kappa by 1.16%, 0.99%, 1.83%, 1.26%, and 2.62%, respectively.
Then, compared to other state-of-the-art classification networks, the performance of ADS-Net
also gets more or less improvement in terms of most metrics with comparable or less model
parameters and computational cost. For example, compared with the network with suboptimal
classification performance (HRNet), the proposed ADS-Net with less model parameters and
FLOPs (see the parameters and FLOPs in Table 3) improves the performance and achieves 0.9776
for accuracy, 0.9714 for recall, 0.9835 for precision, 0.9774 for F1-score, and 0.9552 for Kappa.
While compared to EfficientNetB2 with comparable model parameters (see the parameters in
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Table 3), our method introduces more computational costs (see the FLOPs in Table 3), but also
has a great improvement, which shows the effectiveness of our proposed ADS-Net. In addition,
for the examination-based classification of Normal/ROP, a similar phenomenon can also be
observed from Table 4. It is worth noting that the proposed ADS-Net is also compared with
the two recent studies on the ROP screening [25,34], and the comparison experiments use the
exact same ROP screening dataset in this study. The network proposed by Zhang et al. and our
previous work are per-image classifiers, which are ImageNet pre-trained VGG16 and ImageNet
pre-trained ResNet18 with attention mechanisms. As can be seen from Table 3, the proposed
ADS-Net outperforms the other two methods on all metrics, which improves the Kappa by 1.88%
and 1.00% compared with the other two methods, respectively. Moreover, the model parameters
and computational cost of the proposed ADS-Net is less than that of the above two methods. The
experimental results show the effectiveness of the proposed ADS-Net for the screening of ROP.

3.3.2. Comparison experiments on ROP grading

For ROP grading, we validate the proposed ADS-Net on 332 fundus images of ROP from 92
examinations. Table 5 and Table 6 give the quantitative results of different methods. As can
be observed from Table 5 and Table 6, SE_ResNext50 [52] achieve suboptimal results, while
ECA-Net152 [43] achieves the worst result in most metrics, especially in examination-based ROP
grading. In addition, compared to the Baseline, the proposed ADS-Net with a slight increase
in model parameters and computational cost gets an overall improvement for both image-based
and examination-based ROP grading, which increases by 3.16% and 7.24% for the W_R of
image-based and examination-based ROP grading. It can be seen from Table 5 and Table 6 that
the proposed ADS-Net achieves the best performance in the image-based and examination-based
ROP grading than other CNN-based classification methods. ADS-Net reaches 0.8886, 0.8880,
0.8883, and 0.9037 in terms of the W_R, W_P, W_F1, and Kappa for image-based ROP grading.
In particular, compared with SE_ResNext50, which has the best performance among all the other
methods for comparison, all indices of ADS-Net have been improved both in image-based and
examination-based ROP grading and FLOPs shows the proposed ADS-Net is more efficient than
SE_ResNext50. The experimental results prove the effectiveness of the proposed ADS-Net for
ROP grading in fundus images.

Table 5. Image-based ROP grading results with different methods

Methods W_R W_P W_F1 Kappa

DenseNet169 [38] 0.8524 0.8539 0.8530 0.8733

ResNet50 [39] 0.8343 0.8353 0.8345 0.8600

ResNext50 [37] 0.8343 0.8422 0.8359 0.8568

SE_ResNet50 [52] 0.8584 0.8603 0.8592 0.8779

SE_ResNext50 [52] 0.8795 0.8824 0.8804 0.9020

InceptionV4 [40] 0.8524 0.8646 0.8539 0.8719

EfficientB2 [41] 0.8464 0.8468 0.8449 0.8707

HRNet [42] 0.8735 0.8749 0.8741 0.8902

ECA-Net152 [43] 0.8223 0.8309 0.8246 0.8459

Baseline 0.8614 0.8743 0.8632 0.8774

Baseline+MsFA 0.8765 0.8800 0.8773 0.8922

Baseline+DS 0.8735 0.8846 0.8747 0.8882

ADS-Net 0.8886 0.8880 0.8883 0.9037



Research Article Vol. 13, No. 8 / 1 Aug 2022 / Biomedical Optics Express 4098

Table 6. Examination-based ROP zoning results with different methods

Methods W_R W_P W_F1 Kappa

DenseNet169 [38] 0.7500 0.7656 0.7546 0.7122

ResNet50 [39] 0.7283 0.7517 0.7339 0.6947

ResNext50 [37] 0.7174 0.7516 0.7242 0.6762

SE_ResNet50 [52] 0.7500 0.7722 0.7554 0.7112

SE_ResNext50 [52] 0.7609 0.7922 0.7666 0.7593

InceptionV4 [40] 0.6957 0.7752 0.7008 0.6557

EfficientB2 [41] 0.7609 0.7681 0.7636 0.7246

HRNet [42] 0.7500 0.7722 0.7554 0.7112

ECA-Net152 [43] 0.7065 0.7540 0.7134 0.6633

Baseline 0.7500 0.7881 0.7560 0.7092

Baseline+MsFA 0.7609 0.8032 0.7651 0.7251

Baseline+DS 0.7717 0.8093 0.7759 0.7366

ADS-Net 0.8043 0.8215 0.8082 0.7671

3.4. Ablation experiments

3.4.1. Ablation experiments for MsFA module

To prove the effect of the proposed MsFA module, we conduct a series of ablation experiments
for ROP screening and ROP grading as shown in Table 3 and Table 5. Firstly, for ROP screening,
the proposed MsFA module embedded in the Baseline (Baseline+MsFA) with a small increase
in the number of model parameters and computational cost (see the parameters and FLOPs in
Table 3) achieves improvement in terms of all evaluation metrics (0.73% for accuracy, 0.43%
for recall, 1.54% for precision, 0.84% for F1-score and 1.75% for Kappa) as shown in Table 3.
Secondly, for ROP grading, embedding the MsFA module into the Baseline (Baseline+MsFA)
also obtains better classification performance. As shown in Table 5, compared with the Baseline,
Baseline+MsFA gets an overall improvement, increasing by 1.75%, 1.57%, 1.63%, and 1.69%
for the W_R, W_P, W_F1, and Kappa, respectively. Meanwhile, it can also be observed from
Table 4 and Table 6 that the examination-based test results of the above two ROP detection tasks
also show performance improvement. Taking the ROP grading for example, compared with
Baseline, embedding the MsFA module into the Baseline (Baseline+MsFA) can improve the
W_R, W_P, W_F1, and Kappa by 1.45%, 1.92%, 1.20%, and 2.24% respectively. The results
demonstrate the effectiveness of the proposed MsFA module.

3.4.2. Ablation experiments for deep supervised learning

We adopt the deep supervised learning strategy by adding two auxiliary classifiers. Previous
studies [44–46] have shown that the introduction of auxiliary losses can help optimize the
learning process without affecting the learning of the master branch. To prove this point, we
also conduct a series of ablation experiments. As can be seen from Table 3 and Table 5,
compared with the Baseline, the introduction of deep supervised learning has improved the
classification performance for two ROP detection tasks. Taking the image-based ROP grading
for example, compared with the Baseline, the introduction of deep supervised learning strategy
(Baseline+DS) improves the W_R, W_P, W_F1, and Kappa by 1.40%, 1.18%, 1.33%, and
1.23%, and achieves 0.8735 for W_R, 0.8846 for W_P, 0.8747 for W_F1, and 0.8882 for Kappa.
A similar phenomenon can be observed in examination-based ROP grading from Table 6. There
are two possible reasons for this performance improvement. Firstly, deep supervision can improve
the directness and transparency of the hidden layers learning process, thereby improving the
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discrimination and robustness of features. Secondly, the two auxiliary losses play a regularization
role, reducing the risk of overfitting.

4. Conclusion and discussions

In this paper, we propose a novel attention-awareness and deep supervision based network (ADS-
Net) for ROP detection, including ROP screening and 3-level ROP grading. Firstly, to solve the
challenge that ROP lesions account for a small proportion of the entire fundus image with complex
global dependency as shown in Fig. 1, we design a novel attention module named as MsFA module,
which is embedded into the later layers of the DenseNet121 to help model take full advantage of
convolution and self-attention, promoting feature learning and producing more discriminative
feature representation. Then, to solve the challenge of difficult training of deep model, the deep
supervised learning strategy is adopted by adding two auxiliary classifiers after some intermediate
convolutional layers in our ADS-Net. Finally, we conduct comprehensive experiments to validate
the proposed ADS-Net in image-based and examination-based classification patterns. The
experimental results show that compared with other state-of-the-art CNN-based classification
networks, the classification performance of the proposed ADS-Net has been improved for two
ROP detection tasks.

In addition, there is a major finding from Table 3 to Table 5, where the performance on ROP
screening is much higher than that of 3-level ROP grading, indicating the latter task is much
more difficult for CNNs. This finding is consistent with the clinical diagnosis that even for
experienced ophthalmologists, the recognition of ROP grading is a tricky problem. In addition,
the possible reason for such a challenge is that the amount of available data of the former task
(Normal/ROP) is much larger than that of the latter task (3-level ROP grading). Therefore, in
future works, we will collect more ROP grading data with high-quality annotation to further
improve the performance of the proposed ADS-Net and validate the effectiveness of the proposed
ADS-Net.
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